Question 1 of 5Find the inverse:
Select the Correct Answer Below: Correct! Not Correct!
A
$$f^{-1}(x)=x^2 + 7$$ $$x ≥ 0$$
B
$$f^{-1}(x)=\frac{x^2}{7}$$ $$x ≥ 0$$
C
$$f^{-1}(x)=\frac{x^2}{2}- 7$$ $$x ≥ 0$$
D
$$f^{-1}(x)=\frac{x^2 - 7}{2}$$ $$x ≤ 0$$
E
$$f^{-1}(x)=x^2 + 7$$ $$x ≤ 0$$
Question 2 of 5Find the inverse:
Select the Correct Answer Below: Correct! Not Correct!
A
$$f^{-1}(x)=\frac{-x^2 + 3}{2}$$ $$x ≥ 0$$
B
$$f^{-1}(x)=-x^2 + 3$$ $$x ≤ 0$$
C
$$f^{-1}(x)=-x^2 + 3$$ $$x ≥ 0$$
D
$$f^{-1}(x)=\frac{-x^2}{2}+ 3$$ $$x ≤ 0$$
E
$$f^{-1}(x)=\frac{-x^2 + x}{2}$$ $$x ≥ 0$$
Question 3 of 5Find the inverse:
Select the Correct Answer Below: Correct! Not Correct!
A
$$f^{-1}(x)=\sqrt{x - 2}+ 3$$ $$x ≥ 2$$
B
$$f^{-1}(x)=-\sqrt{x - 2}+ 3$$ $$x ≥ 2$$
C
$$f^{-1}(x)=\frac{-\sqrt{x + 2}+ 3}{2}$$ $$x ≥ 2$$
D
$$f^{-1}(x)=\frac{-\sqrt{x - 2}+ 3}{2}$$ $$x ≥ 2$$
E
$$f^{-1}(x)=\frac{\sqrt{x + 3}}{2}$$ $$x ≥ -3$$
Question 4 of 5Find the inverse:
Select the Correct Answer Below: Correct! Not Correct!
A
$$f^{-1}(x)=\frac{3\sqrt{x}}{x}$$ $$x > 0$$
B
$$f^{-1}(x)=\frac{\sqrt{x}}{3x}$$ $$x > 0$$
C
$$f^{-1}(x)=\frac{\sqrt{x}+ 3x}{x}$$ $$x > 0$$
D
$$f^{-1}(x)=\frac{\sqrt{x^2}- 3x}{x - 3}$$ $$x ≠ 3$$
E
$$f^{-1}(x)=\frac{\sqrt{x^2}- 3x}{3x - 1}$$ $$x < -\frac{1}{3}$$
Question 5 of 5Find the inverse:
Select the Correct Answer Below: Correct! Not Correct!
A
$$f^{-1}(x)=\frac{2 \sqrt{1 - 2x}}{1 - 2x}$$ $$x < \frac{1}{2}$$
B
$$f^{-1}(x)=\frac{\sqrt{1 - 2x}}{1 - 2x}+ 2$$ $$x < \frac{1}{2}$$
C
$$f^{-1}(x)=1 - \sqrt{2x + 1}$$ $$x < \frac{1}{2}$$
D
$$f^{-1}(x)=\frac{x^2 - 1}{x}$$ $$x > 0$$
E
$$f^{-1}(x)=\frac{2 \sqrt{2x}}{x + 1}$$ $$x > \frac{2}{7}$$

Great Job! You Passed!

Better Luck Next Time...

Restart Quiz ↻
Review Lesson ↻
Next Lesson »