- Demonstrate the ability to find the sum of two complex numbers graphically
- Demonstrate the ability to convert a complex number from rectangular form to polar form
- Demonstrate the ability to convert a complex number from polar form to rectangular form
#1:
Instructions: Find the sum of the two complex numbers graphically.
$$a)\hspace{.1em}(7 + 4i) + (-5 + 6i)$$
$$b)\hspace{.1em}(-7 - 7i) + (6 - 4i)$$
Watch the Step by Step Video Solution View the Written Solution
#2:
Instructions: Convert each from polar form to rectangular form.
$$a)\hspace{.1em}5\left(\text{cos}\frac{π}{4}+ i \hspace{.1em}\text{sin}\frac{π}{4}\right)$$
$$b)\hspace{.1em}3\left(\text{cos}\frac{7π}{6}+ i \hspace{.1em}\text{sin}\frac{7π}{6}\right)$$
Watch the Step by Step Video Solution View the Written Solution
#3:
Instructions: Convert each from rectangular form to polar form.
$$a)\hspace{.1em}{-\sqrt{6}}+ i\sqrt{6}$$
$$b)\hspace{.1em}2 + 2i\sqrt{3}$$
Watch the Step by Step Video Solution View the Written Solution
#4:
Instructions: Convert each from rectangular form to polar form.
$$a)\hspace{.1em}{-3\sqrt{3}}+ 3i$$
$$b)\hspace{.1em}\frac{3\sqrt{3}}{2}- \frac{3}{2}i$$
Watch the Step by Step Video Solution View the Written Solution
#5:
Instructions: Convert each from rectangular form to polar form.
$$a)\hspace{.1em}{-\frac{\sqrt{21}}{2}}+ \frac{3\sqrt{7}}{2}i$$
$$b)\hspace{.1em}{-3}- 3i$$
Watch the Step by Step Video Solution View the Written Solution
Written Solutions:
#1:
Solutions:
$$a)\hspace{.1em}2 + 10i$$
$$b)\hspace{.1em}{-}1 - 11i$$
Watch the Step by Step Video Solution
#2:
Solutions:
$$a)\hspace{.1em}\frac{5\sqrt{2}}{2}+ \frac{5\sqrt{2}}{2}i$$
$$b)\hspace{.1em}{-\frac{3\sqrt{3}}{2}}- \frac{3}{2}i$$
Watch the Step by Step Video Solution
#3:
Solutions:
$$a)\hspace{.1em}2\sqrt{3}(\text{cos}\hspace{.1em}135° + i \hspace{.1em}\text{sin}135°)$$
$$b)\hspace{.1em}4(\text{cos}\hspace{.1em}60° + i \hspace{.1em}\text{sin}\hspace{.1em}60°)$$
Watch the Step by Step Video Solution
#4:
Solutions:
$$a)\hspace{.1em}6(\text{cos}\hspace{.1em}150° + i \hspace{.1em}\text{sin}150°)$$
$$b)\hspace{.1em}3\left(\text{cos}\hspace{.1em}330°+ i \hspace{.1em}\text{sin}\hspace{.1em}330°\right)$$
Watch the Step by Step Video Solution
#5:
Solutions:
$$a)\hspace{.1em}\sqrt{21}\left(\text{cos}\hspace{.1em}120°+ i \hspace{.1em}\text{sin}\hspace{.1em}120°\right)$$
$$b)\hspace{.1em}3\sqrt{2}(\text{cos}\hspace{.1em}225° + i \hspace{.1em}\text{sin}\hspace{.1em}225°)$$