- Demonstrate the ability to find the sum of two vectors
- Demonstrate the ability to multiply a vector by a scalar
#1:
Instructions: Find the resultant using the triangle method.
$$a)\hspace{.1em}\overrightarrow{a}=\langle -5,1 \rangle, \overrightarrow{b}=\langle 6, -8 \rangle$$
Instructions: Find the resultant using the parallelogram method.
$$b)\hspace{.1em}\overrightarrow{a}=\langle 4,5 \rangle, \overrightarrow{b}=\langle 6, -8 \rangle$$
Watch the Step by Step Video Solution View the Written Solution
#2:
Instructions: Find the component form of the resultant vector.
$$a)\hspace{.1em}\overrightarrow{f}=\langle -3,9 \rangle, \overrightarrow{b}=\langle -7, -1 \rangle$$ $$\text{Find}: 2\overrightarrow{f}+ \hspace{.2em}6\overrightarrow{b}$$
$$b)\hspace{.1em}\overrightarrow{u}=\langle 3,-10 \rangle, \overrightarrow{b}=\langle -11, -5 \rangle$$ $$\text{Find}: 9\overrightarrow{u}+ \hspace{.2em}8\overrightarrow{b}$$
Watch the Step by Step Video Solution View the Written Solution
#3:
Instructions: Find the component form of the resultant vector.
$$a)\hspace{.1em}\overrightarrow{f}=\langle -5,1 \rangle, \overrightarrow{v}=\langle 2, 12 \rangle$$ $$\text{Find}: 5\overrightarrow{f}+ \hspace{.2em}5\overrightarrow{v}$$
$$b)\hspace{.1em}\overrightarrow{u}=\langle 11,6 \rangle, \overrightarrow{v}=\langle 2, -5 \rangle$$ $$\text{Find}: -4\overrightarrow{u}- \hspace{.2em}9\overrightarrow{v}$$
Watch the Step by Step Video Solution View the Written Solution
#4:
Instructions: Find the component form of the resultant vector.
$$a)\hspace{.1em}\overrightarrow{f}=\langle 5,-7 \rangle, \overrightarrow{g}=\langle -6, -6 \rangle$$ $$\text{Find}: -2\overrightarrow{f}- \hspace{.2em}9\overrightarrow{g}$$
$$b)\hspace{.1em}\overrightarrow{a}=\langle 12,-7 \rangle, \overrightarrow{v}=\langle 10, -8 \rangle$$ $$\text{Find}: 4\overrightarrow{a}+ \hspace{.2em}5\overrightarrow{v}$$
Watch the Step by Step Video Solution View the Written Solution
#5:
Instructions: Find the component form of the resultant vector.
$$a)\hspace{.1em}\left| \hspace{.2em} \overrightarrow{u} \hspace{.2em} \right|=10, θ=184° $$ $$\left| \hspace{.2em} \overrightarrow{b} \hspace{.2em} \right|=14, θ=304°$$ $$\text{Find}: -\overrightarrow{u}- \hspace{.2em}\overrightarrow{b}$$
$$b)\hspace{.1em}\left| \hspace{.2em} \overrightarrow{f} \hspace{.2em} \right|=12, θ=24° $$ $$\left| \hspace{.2em} \overrightarrow{b} \hspace{.2em} \right|=18, θ=52°$$ $$\text{Find}: 8\overrightarrow{f}- \hspace{.2em}8\overrightarrow{b}$$
Watch the Step by Step Video Solution View the Written Solution
Written Solutions:
#1:
Solutions:
$$a)\hspace{.1em}\overrightarrow{a}+ \overrightarrow{b}=\langle 1, -7 \rangle$$
$$b)\hspace{.1em}\overrightarrow{a}+ \overrightarrow{b}=\langle 10, -3 \rangle$$
Watch the Step by Step Video Solution
#2:
Solutions:
$$a)\hspace{.1em}2\overrightarrow{f}+ 6\overrightarrow{b}=\langle -48, 12 \rangle$$
$$b)\hspace{.1em}9\overrightarrow{u}+ 8\overrightarrow{b}=\langle -61, -130 \rangle$$
Watch the Step by Step Video Solution
#3:
Solutions:
$$a)\hspace{.1em}5\overrightarrow{f}+ 5\overrightarrow{v}=\langle -15, 65 \rangle$$
$$b)\hspace{.1em}{-}4\overrightarrow{u}- 9\overrightarrow{v}=\langle -62, 21 \rangle$$
Watch the Step by Step Video Solution
#4:
Solutions:
$$a)\hspace{.1em}{-}2\overrightarrow{f}- 9\overrightarrow{g}=\langle 44, 68 \rangle$$
$$b)\hspace{.1em}4\overrightarrow{a}+ 5\overrightarrow{v}=\langle 98, -68 \rangle$$
Watch the Step by Step Video Solution
#5:
Solutions:
$$a)\hspace{.1em}{-}\overrightarrow{u}- \overrightarrow{b}=\langle 2.15, 12.3 \rangle$$
$$b)\hspace{.1em}8\overrightarrow{f}- 8\overrightarrow{b}=\langle -0.95, -74.43 \rangle$$