Question 1 of 5: Find the exact value:
A
$$2 - \sqrt{3}$$
B
$$-2 - \sqrt{3}$$
C
$$-1$$
D
$$\frac{\sqrt{6}- \sqrt{2}}{4}$$
E
$$2 + \sqrt{3}$$
Question 2 of 5: Find the exact value:
A
$$-\sqrt{3}$$
B
$$\sqrt{3}$$
C
$$0$$
D
$$\frac{\sqrt{2}}{2}$$
E
$$-1$$
Question 3 of 5: Complete the identity:
A
$$1 - \text{cot}\hspace{.1em}θ \hspace{.1em}\text{cos}\hspace{.1em}θ$$
B
$$\text{tan}^2 θ - \text{sin}^2 θ$$
C
$$\text{tan}^2 θ - 1$$
D
$$\text{tan}\left(\frac{π}{4}- θ\right)$$
E
$$-\text{tan}\hspace{.1em}θ$$
Question 4 of 5: Complete the identity:
A
$$-\text{sin}\hspace{.1em}β \hspace{.1em}\text{tan}\hspace{.1em}θ$$
B
$$\frac{\text{cos}\hspace{.1em}β}{\text{sin}^2 θ}$$
C
$$\text{tan}^2 θ + \text{cot}^2 β$$
D
$$\text{tan}\hspace{.1em}θ$$
E
$$-\text{tan}\hspace{.1em}θ$$
Question 5 of 5: Find all:
A
$$\text{sin}(θ + β)=\frac{4 \sqrt{2}+ \sqrt{5}}{9}$$ $$\text{tan}(θ + β)=\frac{-\sqrt{5}- \sqrt{2}}{2}$$ θ + β is in quadrant I
B
$$\text{sin}(θ + β)=\frac{4 \sqrt{2}+ \sqrt{5}}{9}$$ $$\text{tan}(θ + β)=\frac{-\sqrt{5}- \sqrt{2}}{2}$$ θ + β is in quadrant II
C
$$\text{sin}(θ + β)=\frac{2 \sqrt{5}+ \sqrt{3}}{17}$$ $$\text{tan}(θ + β)=\frac{\sqrt{11}+ \sqrt{5}}{13}$$ θ + β is in quadrant IV
D
$$\text{sin}(θ + β)=\frac{2 \sqrt{5}+ \sqrt{3}}{17}$$ $$\text{tan}(θ + β)=\frac{\sqrt{11}+ \sqrt{5}}{13}$$ θ + β is in quadrant I
E
$$\text{sin}(θ + β)=\frac{2}{3}$$ $$\text{tan}(θ + β)=-\frac{\sqrt{5}}{12}$$ θ + β is in quadrant II