- Demonstrate the ability to find the arc length on a circle
- Demonstrate the ability to find the area of a sector of a circle
#1:
Instructions: Find the length of each arc.
$$a)\hspace{.1em}r=10 \hspace{.15em}\text{mi}, θ=\frac{7π}{12}$$
$$b)\hspace{.1em}r=10 \hspace{.15em}\text{km}, θ=\frac{5π}{6}$$
Watch the Step by Step Video Solution View the Written Solution
#2:
Instructions: Find the length of each arc.
$$a)\hspace{.1em}r=6 \hspace{.15em}\text{cm}, θ=\frac{17π}{12}$$
$$b)\hspace{.1em}r=5 \hspace{.15em}\text{km}, θ=240°$$
Watch the Step by Step Video Solution View the Written Solution
#3:
Instructions: Find the length of each arc.
$$a)\hspace{.1em}r=8 \hspace{.15em}\text{m}, θ=120°$$
$$b)\hspace{.1em}r=19 \hspace{.15em}\text{cm}, θ=270°$$
Watch the Step by Step Video Solution View the Written Solution
#4:
Instructions: Find the area of each sector.
$$a)\hspace{.1em}r=9 \hspace{.15em}\text{yd}, θ=\frac{7π}{6}$$
$$b)\hspace{.1em}r=16 \hspace{.15em}\text{ft}, θ=\frac{3π}{2}$$
Watch the Step by Step Video Solution View the Written Solution
#5:
Instructions: Find the area of each sector.
$$a)\hspace{.1em}r=8 \hspace{.15em}\text{cm}, θ=90°$$
$$b) \hspace{.1em}r=12 \hspace{.15em}\text{yd}, θ=270°$$
Watch the Step by Step Video Solution View the Written Solution
Written Solutions:
#1:
Solutions:
$$a)\hspace{.1em}\frac{35π}{6}\hspace{.1em}\text{mi}$$
$$b)\hspace{.1em}\frac{25π}{3}\hspace{.1em}\text{km}$$
Watch the Step by Step Video Solution
#2:
Solutions:
$$a)\hspace{.1em}\frac{17π}{2}\hspace{.1em}\text{cm}$$
$$b)\hspace{.1em}\frac{20π}{3}\hspace{.1em}\text{km}$$
Watch the Step by Step Video Solution
#3:
Solutions:
$$a)\hspace{.1em}\frac{16π}{3}\hspace{.1em}\text{m}$$
$$b)\hspace{.1em}\frac{57π}{2}\hspace{.1em}\text{cm}$$
Watch the Step by Step Video Solution
#4:
Solutions:
$$a)\hspace{.1em}\frac{189π}{4}\hspace{.1em}\text{yd}^2$$
$$b)\hspace{.1em}192π \hspace{.1em}\text{ft}^2$$
Watch the Step by Step Video Solution
#5:
Solutions:
$$a)\hspace{.1em}16π \hspace{.1em}\text{cm}^2$$
$$b)\hspace{.1em}108π \hspace{.1em}\text{yd}^2$$