Question 1 of 5: Find the common ratio (r) and the explicit formula (an): 
  A
 $$r=4$$ $$a_{n}=\frac{1}{2}\cdot 4^{n - 1}$$
 B
 $$r=-4$$ $$a_{n}=-2 \cdot (-4)^{n - 1}$$
 C
 $$r=-2$$ $$a_{n}=-3 \cdot (-2)^{n - 1}$$
 D
 $$r=-4$$ $$a_{n}=-3 \cdot (-4)^{n - 1}$$
 E
 $$r=2$$ $$a_{n}=-\frac{1}{3}\cdot \left(-\frac{1}{3}\right)^{n - 1}$$
 Question 2 of 5: Find the named terms:
  A
 $$a_{11}=1559$$ $$a_{n}=-3 \cdot (-2)^{n - 1}$$
 B
 $$a_{11}=-1536$$ $$a_{n}=-\frac{3}{2}\cdot (-2)^{n - 1}$$
 C
 $$a_{11}=-\frac{3}{2048}$$ $$a_{n}=-\frac{3}{2}\cdot \left(-\frac{1}{2}\right)^{n - 1}$$
 D
 $$a_{11}=-3072$$ $$a_{n}=-3 \cdot 2^{n - 1}$$
 E
 $$a_{11}=3072$$ $$a_{n}=3 \cdot (-2)^{n - 1}$$
 Question 3 of 5: Find the common ratio (r) and the named terms:
  A
 $$r=2$$ $$a_{9}=512$$ $$a_n=2 \cdot 2^{n - 1}$$
 B
 $$r=-3$$ $$a_{9}=-6561$$ $$a_n=-1 \cdot (-3)^{n - 1}$$
 C
 $$r=2$$ $$a_{9}=256$$ $$a_n=2^{n - 1}$$
 D
 $$r=2$$ $$a_{9}=-256$$ $$a_n=(-2)^{n - 1}$$
 E
 $$r=4$$ $$a_{9}=1097$$ $$a_n=4 \cdot \left(\frac{1}{3}\right)^{n - 1}$$
 Question 4 of 5: Evaluate the geometric series:
  A
 $$-166{,}708$$
 B
 $$-172{,}994$$
 C
 $$-159{,}964$$
 D
 $$-\frac{4}{7}$$
 E
 $$\frac{6}{7}$$
 Question 5 of 5: Evaluate the geometric series:
  A
 $$\frac{11}{3}$$
 B
 No Sum
 C
 $$2$$
 D
 $$\frac{14}{3}$$
 E
 $$\frac{3}{4}$$