About Rational Exponents:
In some cases, rational exponents (fractional exponents) allow us to work with radicals more easily. Most commonly, this allows us to write the nth root of a number or expression as being raised to the power of 1/n.
Test Objectives
- Demonstrate the ability to convert from radical notation to exponential notation
- Demonstrate the ability to convert from exponential notation to radical notation
- Demonstrate a general understanding of the rules of exponents
#1:
Instructions: Rewrite in exponential form.
$$a)\hspace{.2em}\sqrt{x - 7}$$
$$b)\hspace{.2em}\sqrt[3]{(x + 1)^2}$$
Watch the Step by Step Video Solution View the Written Solution
#2:
Instructions: Rewrite in exponential form.
$$a)\hspace{.2em}\sqrt[3]{(x^2 - 3)}$$
$$b)\hspace{.2em}(\sqrt[3]{7x})^4$$
Watch the Step by Step Video Solution View the Written Solution
#3:
Instructions: Rewrite in radical form.
$$a)\hspace{.2em}(6x)^{\frac{1}{2}}$$
$$b)\hspace{.2em}\frac{1}{(3x - 5)^{-\frac{3}{2}}}$$
Watch the Step by Step Video Solution View the Written Solution
#4:
Instructions: Simplify each, write in radical form.
$$a)\hspace{.2em}\frac{(-4x^2 - 5)^{\frac{1}{2}}}{x^2}$$
$$b)\hspace{.2em}\frac{x^{\frac{4}{3}}y^{\frac{7}{3}}z^{-2}}{(xy)^{\frac{1}{3}}}$$
Watch the Step by Step Video Solution View the Written Solution
#5:
Instructions: Simplify each, write in radical form.
$$a)\hspace{.2em}\frac{x^{\frac{2}{3}}y^{\frac{5}{3}}z^{\frac{1}{3}}}{(x^{\frac{1}{5}}y^{-\frac{5}{2}}z^{-\frac{2}{3}})^0}$$
$$b)\hspace{.2em}(y^{-\frac{3}{5}}z^{\frac{4}{3}})^{-\frac{1}{2}}\cdot (x^{\frac{1}{4}}y^{\frac{1}{2}}z^{\frac{3}{2}})^2$$
Watch the Step by Step Video Solution View the Written Solution
Written Solutions:
#1:
Solutions:
$$a)\hspace{.2em}(x-7)^{\frac{1}{2}}$$
$$b)\hspace{.2em}(x + 1)^{\frac{2}{3}}$$
Watch the Step by Step Video Solution
#2:
Solutions:
$$a)\hspace{.2em}(x^2 - 3)^{\frac{1}{3}}$$
$$b)\hspace{.2em}7^{\frac{4}{3}}x^{\frac{4}{3}}$$
Watch the Step by Step Video Solution
#3:
Solutions:
$$a)\hspace{.2em}\sqrt{6x}$$
$$b)\hspace{.2em}(\sqrt{3x - 5})^3$$
Watch the Step by Step Video Solution
#4:
Solutions:
$$a)\hspace{.2em}\frac{\sqrt{-4x^2-5}}{x^2}$$
$$b)\hspace{.2em}\frac{xy^2}{z^2}$$
Watch the Step by Step Video Solution
#5:
Solutions:
$$a)\hspace{.2em}y\sqrt[3]{x^2y^2z}$$
$$b)\hspace{.2em}yz^2 \sqrt[10]{y^3}\sqrt[3]{z}\sqrt{x}$$