- Demonstrate the ability to plot polar coordinates on the polar grid
- Demonstrate the ability to convert between polar and rectangular coordinates
- Demonstrate the ability to find multiple forms for given polar coordinates
#1:
Instructions: Plot the given polar coordinates and convert to rectangular coordinates.
$$a)\hspace{.1em}(5, 240°)$$
$$b)\hspace{.1em}(4, 45°)$$
Watch the Step by Step Video Solution View the Written Solution
#2:
Instructions: Plot the given polar coordinates and convert to rectangular coordinates.
$$a)\hspace{.1em}(3, -240°)$$
$$b)\hspace{.1em}(2, 270°)$$
Watch the Step by Step Video Solution View the Written Solution
#3:
Instructions: Convert each pair of rectangular coordinates to polar coordinates and plot.
$$r > 0$$ $$0° ≤ θ < 360°$$$$a)\hspace{.1em}\left(-\frac{3\sqrt{3}}{2}, \frac{3}{2}\right)$$
$$b)\hspace{.1em}\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$$
Watch the Step by Step Video Solution View the Written Solution
#4:
Instructions: Convert each pair of rectangular coordinates to polar coordinates and plot.
$$r > 0$$ $$0° ≤ θ < 360°$$$$a)\hspace{.1em}(\sqrt{2}, \sqrt{2})$$
$$b)\hspace{.1em}\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$
Watch the Step by Step Video Solution View the Written Solution
#5:
Instructions: Find all pairs of polar coordinates that describe the given point.
$$a)\hspace{.1em}(3, 255°)$$
$$b)\hspace{.1em}(-4, 150°)$$
Watch the Step by Step Video Solution View the Written Solution
Written Solutions:
#1:
Solutions:
$$a)\hspace{.1em}\left(-\frac{5}{2}, -\frac{5\sqrt{3}}{2}\right)$$
$$b)\hspace{.1em}(2\sqrt{2}, 2\sqrt{2})$$
Watch the Step by Step Video Solution
#2:
Solutions:
$$a)\hspace{.1em}\left(-\frac{3}{2}, \frac{3\sqrt{3}}{2}\right)$$
$$b)\hspace{.1em}(0, -2)$$
Watch the Step by Step Video Solution
#3:
Solutions:
$$a)\hspace{.1em}(3, 150°)$$
$$b)\hspace{.1em}(1, 210°)$$
Watch the Step by Step Video Solution
#4:
Solutions:
$$a)\hspace{.1em}(2, 45°)$$
$$b)\hspace{.1em}(1, 120°)$$
Watch the Step by Step Video Solution
#5:
Solutions:
$$a)\hspace{.1em}(3, 255° + 360n°)$$ $$\text{and}$$ $$(-3, 75° + 360n°)$$
$$b)\hspace{.1em}(-4, 150° + 360n°)$$ $$\text{and}$$ $$(4, 330° + 360n°)$$