About Domain and Range:
When working with relations and functions, we will sometimes be asked to find the domain and range of a relation or function from its equation or its graph. If we want to find the domain, we will inspect our equation and ask the question: what is allowed as a replacement for our independent variable x? For the range, we will think about the possible outputs or y-values, given the possible x-values.
Test Objectives
- Demonstrate the ability to find the domain and range of a relation or function from a graph
- Demonstrate the ability to find the domain of a relation or function
#1:
Instructions: find the domain and range.
$$a)\hspace{.2em}y=-3x - 2$$
$$b)\hspace{.2em}y=\sqrt{x + 1}- 3$$
Watch the Step by Step Video Solution View the Written Solution
#2:
Instructions: find the domain.
$$a)\hspace{.2em}y=\frac{2x}{|3x - 3| - 6}$$
$$b)\hspace{.2em}y=\frac{5x - 3}{\sqrt{\left|x^2 + x - 2\right| - 4}}$$
Watch the Step by Step Video Solution View the Written Solution
#3:
Instructions: find the domain.
$$a)\hspace{.2em}y=-\frac{7}{x^2 - 4x - 5}$$
$$b)\hspace{.2em}y=-\frac{x - 2}{x^2 - 5x + 6}$$
Watch the Step by Step Video Solution View the Written Solution
#4:
Instructions: find the domain.
$$a)\hspace{.2em}y=\frac{\sqrt{x + 4}}{2x - 6}$$
$$b)\hspace{.2em}y=\frac{\sqrt{3x - 2}}{6x^2 + 8x - 30}$$
Watch the Step by Step Video Solution View the Written Solution
#5:
Instructions: find the domain.
$$a)\hspace{.2em}y=\frac{\sqrt{6x^2 + 11x - 7}}{\sqrt{\left|2x - 5\right| + 4x^2 - 2x - 13}}$$
$$b)\hspace{.2em}y=\frac{\sqrt{35x^2 - 58x - 9}}{\sqrt{x^2 - 2x + 1}}$$
Watch the Step by Step Video Solution View the Written Solution
Written Solutions:
#1:
Solutions:
$$a)\hspace{.2em}\text{Domain:}\hspace{.2em}\{x|x \in \mathbb{R}\}$$ $$\text{Range:}\hspace{.2em}\{y|y \in \mathbb{R}\}$$
$$b)\hspace{.2em}\text{Domain:}\hspace{.2em}\{x|x≥ -1\}$$ $$\text{Range:}\hspace{.2em}\{y|y ≥ -3\}$$
Watch the Step by Step Video Solution
#2:
Solutions:
Note: The graphs below have been produced with the help of ASCIIsvg.
$$a)\hspace{.2em}\hspace{.2em}\text{Domain:}\hspace{.2em}\{x|x \ne -1, 3\}$$
$$b)\hspace{.2em}\hspace{.2em}\text{Domain:}\hspace{.2em}\{x|x < -3, x > 2\}$$
Watch the Step by Step Video Solution
#3:
Solutions:
Note: The graphs below have been produced with the help of ASCIIsvg.
$$a)\hspace{.2em}\text{Domain:}\hspace{.2em}\{x | x ≠ -1, 5\}$$
$$b)\hspace{.2em}\text{Domain:}\hspace{.2em}\{x | x ≠ 2, 3\}$$
Watch the Step by Step Video Solution
#4:
Solutions:
Note: The graphs below have been produced with the help of ASCIIsvg.
$$a)\hspace{.2em}\text{Domain:}\hspace{.2em}\left\{x | x ≥ -4, x ≠ 3\right\}$$
$$b)\hspace{.2em}\text{Domain:}\hspace{.2em}\left\{x | x ≥ \frac{2}{3}, x ≠ \frac{5}{3}\right\}$$
Watch the Step by Step Video Solution
#5:
Solutions:
Note: The graphs below have been produced with the help of ASCIIsvg.
$$a)\hspace{.2em}\text{Domain:}\hspace{.2em}\left\{x | x ≤ -\frac{7}{3}, x > 2\right\}$$
$$b)\hspace{.2em}\text{Domain:}\hspace{.2em}\left\{x | x ≤ -\frac{1}{7}, x ≥ \frac{9}{5}\right\}$$