### About Solving Radical Equations Higher Roots:

We will often encounter radical equations with higher-level roots. These problems will mostly contain cube roots and fourth roots. Additionally, we may need to solve a radical equation that contains mixed roots. Solving this type of equation involves finding the LCM of the two indexes.

Test Objectives

- Demonstrate the ability to solve a radical equation with cube roots
- Demonstrate the ability to solve a radical equation with fourth roots
- Demonstrate the ability to solve a radical equation with mixed roots

#1:

Instructions: solve each equation.

$$a)\hspace{.2em}\large\sqrt[3]{2x - 1}=-2$$

Watch the Step by Step Video Lesson View the Written Solution

#2:

Instructions: solve each equation.

$$a)\hspace{.2em}\large\sqrt[4]{5x - 4}+ 5=7$$

Watch the Step by Step Video Lesson View the Written Solution

#3:

Instructions: solve each equation.

$$a)\hspace{.2em}\large\sqrt{5\sqrt{3x - 11}}=\sqrt{x + 11}$$

Watch the Step by Step Video Lesson View the Written Solution

#4:

Instructions: solve each equation.

$$a)\hspace{.2em}\large\sqrt{7\sqrt{6x + 9}}=\sqrt{5x + 3}$$

Watch the Step by Step Video Lesson View the Written Solution

#5:

Instructions: solve each equation.

$$a)\hspace{.2em}\large\sqrt{x + 1}=\sqrt[3]{4x - 5}$$

Watch the Step by Step Video Lesson View the Written Solution

Written Solutions:

#1:

Solutions:

$$a)\hspace{.2em}x=-\frac{7}{2}$$

Watch the Step by Step Video Lesson

#2:

Solutions:

$$a)\hspace{.2em}x=4$$

Watch the Step by Step Video Lesson

#3:

Solutions:

$$a)\hspace{.2em}x=9,44$$

Watch the Step by Step Video Lesson

#4:

Solutions:

$$a)\hspace{.2em}x=12$$

Watch the Step by Step Video Lesson

#5:

Solutions:

$$a)\hspace{.2em}x=\frac{5 + \sqrt{13}}{2}, 8$$