### About Logarithmic Functions:

Logarithms give us another method to write exponents. We can convert back and forth between exponential form and logarithmic form. When we want the exponential form, we are solving for the power. In the case of logarithmic form, we are solving for the exponent. In order to solve a logarithmic equation, we convert the equation into exponential form, then solve.

Test Objectives

- Demonstrate the ability to convert from exponential form to logarithmic form
- Demonstrate the ability to convert from logarithmic form to exponential form
- Demonstrate the ability to solve logarithmic equations

#1:

Instructions: Write each in logarithmic form.

a) $$2^6=64$$

b) $$81^{\frac{1}{2}}=9$$

c) $$\sqrt[3]{125}=5$$

d) $$10^{-3}=\frac{1}{1000}$$

Watch the Step by Step Video Solution View the Written Solution

#2:

Instructions: Write each in exponential form.

a) $$\log_{10}(10,000)=4$$

b) $$\log_{11}\left(\frac{1}{121}\right)=-2$$

c) $$\log_{216}(6)=\frac{1}{3}$$

d) $$\log_{4}(256)=4$$

e) $$\log_{1327}(1)=0$$

Watch the Step by Step Video Solution View the Written Solution

#3:

Instructions: Solve each equation.

a) $$\log_{125}(25)=x$$

Watch the Step by Step Video Solution View the Written Solution

#4:

Instructions: Solve each equation.

a) $$\log_{x}(625)=4$$

Watch the Step by Step Video Solution View the Written Solution

#5:

Instructions: Solve each equation.

a) $$\log_{x}(1024)=\frac{5}{2}$$

Watch the Step by Step Video Solution View the Written Solution

Written Solutions:

#1:

Solutions:

a) $$\log_{2}(64)=6$$

b) $$\log_{81}(9)=\frac{1}{2}$$

c) $$\log_{125}(5)=\frac{1}{3}$$

d) $$\log_{10}\left(\frac{1}{1000}\right)=-3$$

Watch the Step by Step Video Solution

#2:

Solutions:

a) $$10^4=10,000$$

b) $$11^{-2}=\frac{1}{121}$$

c) $$216^{\frac{1}{3}}=6$$

d) $$4^4=256$$

e) $$1327^0=1$$

Watch the Step by Step Video Solution

#3:

Solutions:

a) $$x=\frac{2}{3}$$

Watch the Step by Step Video Solution

#4:

Solutions:

a) $$x=5$$

Watch the Step by Step Video Solution

#5:

Solutions:

a) $$x=16$$