About Dividing Polynomials by Monomials:

Before we get into polynomial long division, we first tackle dividing a polynomial by a monomial. To perform our division, we divide each term of the numerator by the monomial denominator, and simplify the result.


Test Objectives
  • Demonstrate the ability to divide a polynomial by a monomial
Dividing Polynomials by Monomials Practice Test:

#1:

Instructions: Find each quotient.

a) $$(32b^3 + 4b^2 + 32b) \, ÷ \, (8b)$$

b) $$(-18a^4 + 2a^3 - 18a^2) \, ÷ \, (-6a^3)$$


#2:

Instructions: Find each quotient.

a) $$(12r^5 - 4r^4 + 2r^3) \, ÷ \, (4r^2)$$

b) $$(-3n^3 + 18n^2 - 6n) \, ÷ \, (-6n^3)$$


#3:

Instructions: Find each quotient.

a) $$(2x^5y^3 + 8x^4y^2 - 4x^3y) \, ÷ \, (-2x^2y^2)$$

b) $$(-15a^4b^7 - 20a^2b^6 + 5ab^3 - 4) \, ÷ \, (-20a^2b)$$


#4:

Instructions: Find each quotient.

a) $$\left(\frac{3x^7y^3}{5}-\frac{2x^4y^2}{7}+\frac{2xy}{3}- 3\right) \, ÷ \, 4xy^5$$


#5:

Instructions: Find each quotient.

a) $$\left(\frac{-4x^3y^2}{5}+\frac{8x^2y}{3}- 12x\right) \, ÷ \, 20x^9y^7$$


Written Solutions:

#1:

Solutions:

a) $$4b^2 + \frac{b}{2} + 4$$

b) $$3a - \frac{1}{3} + \frac{3}{a}$$


#2:

Solutions:

a) $$3r^3 - r^2 + \frac{r}{2}$$

b) $$\frac{1}{2} - \frac{3}{n} + \frac{1}{n^2}$$


#3:

Solutions:

a) $$-x^3y - 4x^2 + \frac{2x}{y}$$

b) $$\frac{3a^2b^6}{4} + b^5 - \frac{b^2}{4a} + \frac{1}{5a^2b}$$


#4:

Solutions:

a) $$\frac{3x^6}{20y^2} - \frac{x^3}{14y^3} + \frac{1}{6y^4} - \frac{3}{4xy^5}$$


#5:

Solutions:

a) $$-\frac{1}{25x^6y^5} + \frac{2}{15x^7y^6} - \frac{3}{5x^8y^7}$$